
55
Symmetric Matrix Eigenvalue

Techniques

Ivan Slapničar
University of Split

55.1 Basic Methods . 55-2
55.2 Tridiagonalization . 55-6
55.3 Implicitly Shifted QR Method . 55-9
55.4 Divide and Conquer Method . 55-12

55.5 Bisection and Inverse Iteration . 55-15

55.6 Multiple Relatively Robust Representations 55-16

55.7 Jacobi Method . 55-18

55.8 Lanczos Method . 55-20

55.9 Comparison of Methods . 55-23

References . 55-24

The eigenvalue decomposition (EVD) is an infinite iterative procedure — finding eigenvalues
is equivalent to finding zeros of the characteristic polynomial, and, by the results of Abel and
Galois, there is no algebraic formula for roots of the polynomial of degree greater than four.
However, the number of arithmetic operations required to compute EVD to some prescribed
accuracy is also finite — EVD of a general symmetric matrix requires O(n3) operations,
while for matrices with special structure this number can be smaller. For example, the EVD
of a tridiagonal matrix can be computed in O(n2) operations (see Sections 55.5 and 55.6).

Basic methods for the symmetric eigenvalue computations are the power method, the
inverse iteration method, and the QR iteration method (see Section 55.1). Since direct
application of those methods to a general symmetric matrix requires O(n4) operations, the
most commonly used algorithms consist of two steps: the given matrix is first reduced to
tridiagonal form, followed by the computation of the EVD of the tridiagonal matrix by QR
iteration, the divide and conquer method, bisection and inverse iteration, or the method
of multiple relatively robust representations. Two other methods are the Jacobi method,
which does not require tridiagonalization, and the Lanczos method, which computes only a
part of the tridiagonal matrix.

Design of an efficient algorithm must take into account the target computer, the desired
speed and accuracy, the specific goal (whether all or some eigenvalues and eigenvectors are
desired), and the matrix size and structure (small or large, dense or sparse, tridiagonal,
etc.). For example, if only some eigenvalues and eigenvectors are required, one can use the
methods of Sections 55.5, 55.6, and 55.8. If high relative accuracy is desired and the matrix
is positive definite, the Jacobi method is the method of choice. If the matrix is sparse, the
Lanczos method should be used. We shall cover the most commonly used algorithms, like
those which are implemented in LAPACK (see Chapter 93) and MATLAB

R©(see Chapter 88).
The algorithms provided in this chapter are intended to assist the reader in understand-
ing the methods. Since the actual software is very complex, the reader is advised to use
professional software in practice.

55-1

55-2 Handbook of Linear Algebra

Efficient algorithms should be designed to use BLAS, and especially BLAS 3, as much as
possible (see Chapter 92). The reasons are twofold: First, calling predefined standardized
routines makes programs shorter and more easily readable, and second, processor vendors
can optimize sets of standardized routines for their processor beyond the level given by
compiler optimization. Examples of such optimized libraries are the Intel Math Kernel
Library and AMD Core Math Library. Both libraries contain processor optimized BLAS,
LAPACK, and FFT routines.

This chapter deals only with the computation of EVD of real symmetric matrices. The
need to compute EVD of a complex Hermitian matrix (see Chapter 9) does not arise often
in applications, and it is theoretically and numerically similar to the real symmetric case
addressed here. All algorithms described in this chapter have their Hermitian counterparts
(see e.g., [ABB99], [LSY98], and Chapters 88, 93, and 94).

The chapter is organized as follows: In Section 55.1, we describe basic methods for EVD
computations. These methods are necessary to understand algorithms of Sections 55.3 to
55.6. In Section 55.2, we describe tridiagonalization by Householder reflections and Givens
rotations. In Sections 55.3 to 55.6, we describe methods for computing the EVD of a tridi-
agonal matrix — QR iteration, the divide and conquer method, bisection and inverse itera-
tion, and the method of multiple relatively robust representations, respectively. The Jacobi
method is described in Section 55.7 and the Lanczos method is described in Section 55.8.
For each method, we also describe the existing LAPACK or Matlab implementations. The
respective timings of the methods are given in Section 55.9.

55.1 Basic Methods
The reader is referred to Sections 4.4, 9.1, 9.2, 9.3, 16.1, and 16.2 for more information on
eigenvalues and their locations.

Definitions:

The eigenvalue decomposition (EVD) of a real symmetric matrix A = [aij] is given by A =

UΛUT , where U is a n×n real orthonormal matrix, UTU = UUT = In, and Λ = diag(λ1, . . . , λn)

is a real diagonal matrix.

The numbers λi are the eigenvalues of A, the columns ui, i = 1, . . . , n, of U are the eigenvec-

tors of A, and Aui = λiui, i = 1, . . . , n.

If |λ1| > |λ2| ≥ · · · ≥ |λn|, we say that λ1 is the dominant eigenvalue.

Deflation is a process of reducing the size of the matrix whose EVD is to be determined, given

that one eigenvector is known (see Fact 4 for details).

The shifted matrix of the matrix A is the matrix A− µI, where µ is the shift.

The simplest method for computing the EVD (also in the unsymmetric case) is the power

method: given starting vector x0, the method computes the sequences

νk = xTkAxk, xk+1 = Axk/‖Axk‖, k = 0, 1, 2, . . . , (55.1)

until convergence. Normalization of xk can be performed in any norm and serves the numerical

stability of the algorithm (avoiding overflow or underflow).

Inverse iteration is the power method applied to the inverse of a shifted matrix, starting from

x0:

νk = xTkAxk, vk+1 = (A− µI)−1xk, xk+1 = vk+1/‖vk+1‖, k = 0, 1, 2, (55.2)

Given starting n × p matrix X0 with orthonormal columns, the orthogonal iteration (also

subspace iteration) forms the sequence of matrices

Yk+1 = AXk, Yk+1 = Xk+1Rk+1 (QR factorization), k = 0, 1, 2, . . . , (55.3)

Symmetric Matrix Eigenvalue Techniques 55-3

where Xk+1Rk+1 is the reduced QR factorization of Yk+1 (Xk+1 is an n×p matrix with orthonor-

mal columns and Rk+1 is an upper triangular p× p matrix).

Starting from the matrix A0 = A, the QR iteration forms the sequence of matrices

Ak = QkRk (QR factorization), Ak+1 = RkQk, k = 0, 1, 2, . . . (55.4)

Given the shift µ, the shifted QR iteration forms the sequence of matrices

Ak − µI = QkRk (QR factorization), Ak+1 = RkQk + µI, k = 0, 1, 2, . . . (55.5)

Facts:

Facts 1 to 14 can be found in [GV96, Chap. 8.2], [Par80, Chap. 4, 5], [Ste01, Chaps. 2.1,
2.2.1, 2.2.2], and [Dem97, Chap. 4].

1. If λ1 is the dominant eigenvalue and if x0 is not orthogonal to u1, then in Eq. (55.1)
νk → λ1 and xk → u1. In other words, the power method converges to the dominant
eigenvalue and its eigenvector.

2. The convergence of the power method is linear in the sense that

|λ1 − νk| = O

(∣∣∣∣λ2λ1
∣∣∣∣k
)
, ‖u1 − xk‖2 = O

(∣∣∣∣λ2λ1
∣∣∣∣k
)
.

More precisely,

|λ1 − νk| ≈
∣∣∣∣c2c1
∣∣∣∣ ∣∣∣∣λ2λ1

∣∣∣∣k ,
where ci is the coefficient of the i-th eigenvector in the linear combination expressing
the starting vector x0.

3. Since λ1 is not readily available, the convergence is in practice determined using
residuals. If ‖Axk − νkxk‖2 ≤ tol, where tol is a user prescribed stopping criterion,
then |λ1 − νk| ≤ tol.

4. After computing the dominant eigenpair, we can perform deflation to reduce the given
EVD to the one of size n− 1. Let Y = [u1 X] be an orthogonal matrix. Then

[
u1 X

]T
A
[
u1 X

]
=

[
λ1 0

0 A1

]
,

where A1 = XTAX.
5. The EVD of the shifted matrix A − µI is given by U(Λ − µI)UT . Sometimes we

can choose shift µ such that the shifted matrix A− µI has better ratio between the
dominant eigenvalue and the absolutely closest one, than the original matrix. In this
case, applying the power method to the shifted matrix will speed up the convergence.

6. Inverse iteration requires solving the system of linear equations (A − µI)vk+1 = xk
for vk+1 in each step. At the beginning, we must compute the LU factorization of
A− µI, which requires 2n3/3 operations and in each subsequent step we must solve
two triangular systems, which requires 2n2 operations.

7. If µ is very close to some eigenvalue of A, then the eigenvalues of the shifted matrix
satisfy |λ1| � |λ2| ≥ · · · ≥ |λn|, so the convergence of the inverse iteration method is
very fast.

8. If µ is very close to some eigenvalue of A, then the matrix A− µI is nearly singular,
so the solutions of linear systems may have large errors. However, these errors are
almost entirely in the direction of the dominant eigenvector so the inverse iteration
method is both fast and accurate.

55-4 Handbook of Linear Algebra

9. We can further increase the speed of convergence of inverse iterations by substituting
the shift µ with the Rayleigh quotient νk in each step, at the cost of computing new
LU factorization each time. See Section 9.2 for more information about the Rayleigh
quotient.

10. If

|λ1| ≥ · · · ≥ |λp| > |λp+1| ≥ · · · ≥ |λn|,

then the subspace iteration given in Eq. (55.3) converges such that

Xk → [u1, . . . ,up] , XT
k AXk → diag(λ1, . . . , λp),

at a speed which is proportional to |λp+1/λp|k.
11. If |λ1| > |λ2| > · · · > |λn|, then the sequence of matrices Ak generated by the QR

iteration given in Eq. (55.4) converges to diagonal matrix Λ. However, this result
is not of practical use, since the convergence may be very slow and each iteration
requires O(n3) operations. Careful implementation, like the one described in Section
55.3, is needed to construct a useful algorithm.

12. The QR iteration is equivalent to orthogonal iteration starting with the matrix X0 =
I. More precisely, the matrices Xk from Eq. (55.3) and Ak from (Eq. 55.4) satisfy
XT
k AXk = Ak.

13. Matrices Ak and Ak+1 from Eq. (55.4) and Eq. (55.5) are orthogonally similar. In
both cases

Ak+1 = QTkAkQk.

14. The QR iteration method is essentially equivalent to the power method and the
shifted QR iteration method is essentially equivalent to the inverse power method on
the shifted matrix.

15. [Wil65, Chaps. 3, 5, 6, 7] [TB97, Chap. V] Let UΛUT and Ũ Λ̃ŨT be the exact and
the computed EVDs of A, respectively, such that the diagonals of Λ and Λ̃ are in the
same order. Numerical methods generally compute the EVD with the errors bounded
by

|λi − λ̃i| ≤ φε‖A‖2, ‖ui − ũi‖2 ≤ ψε
‖A‖2

minj 6=i |λi − λ̃j |
,

where ε is machine precision and φ and ψ are slowly growing polynomial functions of
n which depend upon the algorithm used (typically O(n) or O(n2)). Such bounds are
obtained by combining perturbation bounds, like, for example, those of Section 21.1,
with the floating-point error analysis of the respective algorithms.

16. For some types of matrices it is possible to compute EVD more accurately than
stated in Fact 15. Two examples of such matrices are “well-behaved” matrices and
arrowhead matrices. Eigenvalue problems for “well-behaved” matrices satisfy relative
perturbation bounds of Section 21.6. The EVD for such matrices can be computed
with high relative accuracy as described in Sections 59.4 and 59.5. Arrowhead matrices
have the form

A =

[
D z

zT α

]
,

where D = diag(d1, . . . , dn−1), z =
[
ζ1 · · · ζn−1

]
, and α is a scalar. For such

matrices all eigenvalues and all components of each eigenvector can be computed to
nearly full accuracy in O(n2) operations. See [JSB12] for details.

Symmetric Matrix Eigenvalue Techniques 55-5

Examples:

1. The eigenvalue decomposition of the matrix

A =


4.5013 0.6122 2.1412 2.0390

0.6122 2.6210 −0.4941 −1.2164

2.1412 −0.4941 1.1543 −0.1590

2.0390 −1.2164 −0.1590 −0.9429


computed by the MATLAB command [U,Lambda]=eig(A) is A = UΛUT with (properly

rounded to four decimal places)

U


−0.3697 0.2496 0.1003 −0.8894

0.2810 −0.0238 0.9593 −0.0153

0.3059 −0.8638 −0.1172 −0.3828

0.8311 0.4370 −0.2366 −0.2495

 , Λ =


−2.3197 0 0 0

0 0.6024 0 0

0 0 3.0454 0

0 0 0 6.0056

.

2. Let A, U , and Λ be as in the Example 1, and set x0 = [1 1 1 1]T . The power method

in Eq. (55.1) gives x6 = [0.8893 0.0234 0.3826 0.2496]T . By setting u1 = −U:,4 we have

‖u1 − x6‖2 = 0.0081. Here (Fact 2), c2 = 0.7058, c1 = −1.5370, and∣∣∣∣c2c1
∣∣∣∣ ∣∣∣∣λ2λ1

∣∣∣∣6 = 0.0078.

Similarly, ‖u1−x50‖2 = 1.3857 · 10−15. However, for a different (bad) choice of the starting

vector, x0 = [0 1 0 0]T , where c2 = 0.9593 and c1 = −0.0153, we have ‖u1 − x6‖2 =

0.7956.

3. The deflation matrix Y and the deflated matrix A1 (Fact 4) for the above example are equal

to (correctly rounded):

Y =


−0.8894 −0.0153 −0.3828 −0.2495

−0.0153 0.9999 −0.0031 −0.0020

−0.3828 −0.0031 0.9224 −0.0506

−0.2495 −0.0020 −0.0506 0.9670

 ,

A1 =


6.0056 0 0 0

0 2.6110 −0.6379 −1.3154

0 −0.6379 0.2249 −0.8952

0 −1.3154 −0.8952 −1.5078

.

4. Let A and x0 be as in Example 2. For the shift µ = 6, the inverse iteration method in

Eq. (55.2) gives ‖u1 − x6‖2 = 6.5187 · 10−16, so the convergence is much faster than in

Example 2 (Fact 7).

5. Let A be as in Example 1. Applying six steps of the QR iteration in Eq. (55.4) gives

A6 =


6.0055 −0.0050 −0.0118 −0.0000

−0.0050 3.0270 0.3134 0.0002

−0.0118 0.3134 −2.3013 −0.0017

−0.0000 0.0002 −0.0017 0.6024

.

55-6 Handbook of Linear Algebra

and applying six steps of the shifted QR iteration in Eq. (55.5) with µ = 6 gives

A6 =


−2.3123 0.1452 −0.0215 −0.0000

0.1452 0.6623 0.4005 0.0000

−0.0215 0.4005 2.9781 −0.0000

0.0000 0.0000 0.0000 6.0056

.
In this case both methods converge. The convergence toward the matrix where the eigenvalue

nearest to the shift can be deflated is faster for the shifted iterations.

55.2 Tridiagonalization

The QR iteration in Eq. (55.4) and the shifted QR iteration in Eq. (55.5) require O(n3)
operations (one QR factorization) for each step, which makes these algorithms highly un-
practical. However, if the starting matrix is tridiagonal, one step of these iterations requires
only O(n) operations. As a consequence, the practical algorithm consists of three steps:

1. Reduce A to tridiagonal form T by orthogonal similarities, XTAX = T .
2. Compute the EVD of T , T = QΛQT .
3. Multiply U = XQ.

The EVD of A is then A = UΛUT . Reduction to tridiagonal form can be performed by
using Householder reflectors or Givens rotations and it is a finite process requiring O(n3)
operations. Reduction to tridiagonal form is a considerable compression of data since an
EVD of T can be computed very quickly. The EVD of T can be efficiently computed by
various methods such as QR iteration, the divide and conquer method (DC), bisection
and inverse iteration, or the method of multiple relatively robust representations (MRRR).
These methods are described in subsequent sections.

Facts:

All the following facts, except Fact 6, can be found in [Par80, Chap. 7], [TB97, pp. 196–201],
[GV96, Chap. 8.3.1], [Ste01, pp. 158–162], and [Wil65, pp. 345–367].

1. Tridiagonal form is not unique (see Examples 1 and 2).
2. The reduction of A to tridiagonal matrix by Householder reflections is performed as

follows. Let us partition A as

A =

[
a11 aT

a B

]
.

Let H be the appropriate Householder reflection (see Section 51.5), that is,

v = a + sign(a21)‖a‖2e1, H = I − 2
vvT

vTv
,

and let H1 =

[
1 0T

0 H

]
.

Then

H1AH1 =

[
a11 aTH
Ha HBH

]
=

[
a11 νeT1
νe1 A1

]
, ν = − sign(a21)‖a‖2.

This step annihilates all elements in the first column below the first subdiagonal
and all elements in the first row to the right of the first subdiagonal. Applying this
procedure recursively yields the triangular matrix T = XTAX, X = H1H2 · · ·Hn−2.

Symmetric Matrix Eigenvalue Techniques 55-7

3. H does not depend on the normalization of v. The normalization v1 = 1 is useful
since a2:n can be overwritten by v2:n and v1 does not need to be stored.

4. Forming H explicitly and then computing A1 = HBH requires O(n3) operations,
which would ultimately yield an O(n4) algorithm. However, we do not need to form
the matrix H explicitly — given v, we can overwrite B with HBH in just O(n2)
operations by using one matrix-vector multiplication and two rank-one updates.

5. The entire tridiagonalization algorithm is as follows:

Algorithm 1: Tridiagonalization by Householder reflections
Input: real symmetric n× n matrix A
Output: the main diagonal and sub- and superdiagonal of A are overwritten by T ,

the Householder vectors are stored in the lower triangular part of A
below the first subdiagonal

for j = 1 : n− 2
µ = sign(aj+1,j)‖Aj+1:n,j‖2
if µ 6= 0, then

β = aj+1,j + µ
vj+2:n = Aj+2:n,j/β

endif
aj+1,j = −µ
aj,j+1 = −µ
vj+1 = 1
γ = −2/vTj+1:nvj+1:n

w = γAj+1:n,j+1:nvj+1:n

q = w + 1
2γvj+1:n(vTj+1:nw)

Aj+1:n,j+1:n = Aj+1:n,j+1:n + vj+1:nq
T + qvTj+1:n

Aj+2:n,j = vj+2:n

endfor

6. [DHS89] When symmetry is exploited in performing rank-2 update, Algorithm 1 re-
quires 4n3/3 operations. Another important enhancement is the derivation of the
block-version of the algorithm. Instead of performing rank-2 update on B, thus ob-
taining A1, we can accumulate p transformations and perform rank-2p update. In
the first p steps, the algorithm is modified to update only columns and rows 1, . . . , p,
which are needed to compute the first p Householder vectors. Then the matrix A is
updated by A− UV T − V UT , where U and V are n× p matrices. This algorithm is
rich in matrix–matrix multiplications (roughly one half of the operations is performed
using BLAS 3 routines), but it requires extra workspace for U and V .

7. If the matrix X is needed explicitly, it can be computed from the stored Householder
vectors by Algorithm 2. In order to minimize the operation count, the computation
starts from the smallest matrix and the size is gradually increased; that is, the algo-
rithm computes the sequence of matrices

Hn−2, Hn−3Hn−2, . . . , X = H1 · · ·Hn−2.

A column-oriented version is possible as well, and the operation count in both cases
is 4n3/3. If the Householder matrices Hi are accumulated in the order in which they
are generated, the operation count is 2n3.

55-8 Handbook of Linear Algebra

Algorithm 2: Computation of the tridiagonalizing matrix X
Input: output from Algorithm 1
Output: matrix X such that XTAX = T , where A is the input of Algorithm 1

and T is tridiagonal
X = In
for j = n− 2 : −1 : 1

vj+1 = 1
vj+2:n = Aj+2:n,j

γ = −2/vTj+1:nvj+1:n

w = γXT
j+1:n,j+1:nvj+1:n

Xj+1:n,j+1:n = Xj+1:n,j+1:n + vj+1:nw
T

endfor

8. The error bounds for Algorithms 1 and 2 are as follows: The matrix T̃ computed by
Algorithm 1 is equal to the matrix, which would be obtained by exact tridiagonaliza-
tion of some perturbed matrix A+E (backward error), where ‖E‖2 ≤ ψε‖A‖2 and ψ
is a slowly increasing function of n. The matrix X̃ computed by Algorithm 2 satisfies
X̃ = X + F , where ‖F‖2 ≤ φε and φ is a slowly increasing function of n.

9. Givens rotation parameters c and s are computed as in Fact 51.5.13. Tridiagonaliza-
tion by Givens rotations is performed as follows:

Algorithm 3: Tridiagonalization by Givens rotations
Input: real symmetric n× n matrix A
Output: the matrix X such that XTAX = T is tridiagonal, main diagonal

and sub- and superdiagonal of A are overwritten by T
X = In
for j = 1 : n− 2

for i = j + 2 : n
set x = aj+1,j and y = ai,j

compute G =

[
c s
−s c

]
via Fact 51.5.13[

Aj+1,j:n

Ai,j:n

]
= G

[
Aj+1,j:n

Ai,j:n

]
[
Aj:n,j+1 Aj:n,i

]
=
[
Aj:n,j+1 Aj:n,i

]
GT[

X1:n,j+1 X1:n,i

]
=
[
X1:n,j+1 X1:n,i

]
GT

endfor
endfor

10. Algorithm 3 requires (n−1)(n−2)/2 plane rotations, which amounts to 4n3 operations
if symmetry is properly exploited. The operation count is reduced to 8n3/3 if fast
rotations are used. Fast rotations are obtained by factoring out absolutely larger of c
and s from G.

11. The Givens rotations in Algorithm 3 can be performed in different orderings. For
example, the elements in the first column and row can be annihilated by rotations in
the planes (n− 1, n), (n− 2, n− 1), . . . (2, 3). Since Givens rotations act more selec-
tively than Householder reflectors, they can be useful if A has some special structure.
For example, Givens rotations are used to efficiently tridiagonalize symmetric band
matrices (see Example 4).

Symmetric Matrix Eigenvalue Techniques 55-9

12. Error bounds for Algorithm 3 are the same as the ones for Algorithms 1 and 2 (Fact
8), but with slightly different functions ψ and φ.

Examples:

1. Algorithms 1 and 2 applied to the matrix A from Example 55.1.1 give

T =


4.5013 −3.0194 0 0

−3.0194 −0.3692 1.2804 0

0 1.2804 0.5243 −0.9303

0 0 −0.9303 2.6774

,

X =


1 0 0 0

0 −0.2028 0.4417 −0.8740

0 −0.7091 −0.6817 −0.1800

0 −0.6753 0.5833 0.4514

.

2. Tridiagonalization is implemented in the MATLAB function T = hess(A) ([X,T] =

hess(A) if X is to be computed, as well). In fact, the function hess is more general and it

computes the Hessenberg form of a general square matrix. For the same matrix A as above,

the matrices T and X computed by hess are:

T =


2.6562 1.3287 0 0

1.3287 2.4407 2.4716 0

0 2.4716 3.1798 2.3796

0 0 2.3796 −0.9429

, X =


0.4369 0.2737 0.8569 0

0.7889 0.3412 −0.5112 0

−0.4322 0.8993 −0.0668 0

0 0 0 1.0000

.
3. The block version of tridiagonal reduction is implemented in the LAPACK subroutine

DSYTRD (file dsytrd.f). The computation ofX is implemented in the subroutine DORGTR.

The size of the required extra workspace (in elements) is lwork = nb ∗ n, where nb is the

optimal block size (here, nb = 64), and it is determined automatically by the subroutines.

The timings are given in Section 55.9.

4. Computation of Givens rotation in Algorithm 3 is implemented in the MATLAB functions

planerot and givens, BLAS 1 subroutine DROTG, and LAPACK subroutine DLARTG.

These implementations avoid unnecessary overflow or underflow by appropriately scaling x

and y. Plane rotations (multiplications with G) are implemented in the BLAS 1 subrou-

tine DROT. LAPACK subroutines DLAR2V, DLARGV, and DLARTV generate and apply

multiple plane rotations. LAPACK subroutine DSBTRD tridiagonalizes a symmetric band

matrix by using Givens rotations.

55.3 Implicitly Shifted QR Method

This method is named after the fact that, for a tridiagonal matrix, each step of the shifted
QR iterations given by Eq. (55.5) can be elegantly implemented without explicitly comput-
ing the shifted matrix Ak − µI.

Definitions:

Wilkinson’s shift µ is the eigenvalue of the bottom right 2× 2 submatrix of T , which is closer to

tn,n.

55-10 Handbook of Linear Algebra

Facts:

The following facts can be found in [GV96, pp. 417–422], [Ste01, pp. 163–171], [TB97,
pp. 211–224], [Par80, Chap. 8], [Dem97, Chap. 5.3.1], and [Wil65, Chaps. 8.50, 8.54].
T = [tij] is a real symmetric tridiagonal matrix of order n and T = QΛQT is its EVD.

1. The stable formula for the Wilkinson’s shift is

µ = tn,n −
t2n,n−1

τ + sign(τ)
√
τ2 + t2n,n−1

, τ =
tn−1,n−1 − tn,n

2
.

2. The following recursive function implements the implicitly shifted QR method given
by Eq. (55.5):

Algorithm 4: Implicitly shifted QR method for tridiagonal matrices
Input: real symmetric tridiagonal n× n matrix T
Output: the diagonal of T is overwritten by its eigenvalues
function T = QR iteration(T)

repeat % one sweep
compute a suitable shift µ
set x = t11 − µ and y = t21

compute G =

[
c s
−s c

]
via Fact 51.5.13[

T1,1:3
T2,1:3

]
= G

[
T1,1:3
T2,1:3

]
[
T1:3,1 T1:3,2

]
=
[
T1:3,1 T1:3,2

]
GT

for i = 2 : n− 1
set x = ti,i−1 and y = ti+1,i−1

compute G =

[
c s
−s c

]
via Fact 51.5.13[

Ti,i−1:i+2

Ti+1,i−1:i+2

]
= G

[
Ti,i−1:i+2

Ti+1,i−1:i+2

]
[
Ti−1:i+2,i Ti−1:i+2,i+1

]
=
[
Ti−1:i+2,i Ti−1:i+2,i+1

]
GT

endfor
until |ti,i+1| ≤ ε

√
|ti,i · ti+1,i+1| for some i % deflation

set ti+1,i = 0 and ti,i+1 = 0
T1:i,1:i = QR iteration(T1:i,1:i)
Ti+1:n,i+1:n = QR iteration(Ti+1:n,i+1:n)

3. Wilkinson’s shift (Fact 1) is the most commonly used shift. With Wilkinson’s shift,
the algorithm always converges in the sense that tn−1,n → 0. The convergence is
quadratic, that is, |[Tk+1]n−1,n| ≤ c|[Tk]n−1,n|2 for some constant c, where Tk is the
matrix after the k-th sweep. Even more, the convergence is usually cubic. However, it
can also happen that some ti,i+i, i 6= n− 1, becomes sufficiently small before tn−1,n,
so the practical program has to check for deflation at each step.

4. The plane rotation parameters at the start of the sweep are computed as if the shifted
matrix T − µI has been formed. Since the rotation is applied to the original T and
not to T −µI, this creates new nonzero elements at the positions (3, 1) and (1, 3), the
so-called bulge. The subsequent rotations simply chase the bulge out of the lower

Symmetric Matrix Eigenvalue Techniques 55-11

x x ∗
x x x
∗ x × ×

× × ×
× × ×

× ×

× x 0
x x x ∗
0 x x x

∗ x × ×
× × ×

× ×

× ×
× × x 0

x x x ∗
0 x x x

∗ x × ×
× ×

× ×
× × ×

× × x 0
x x x ∗
0 x x x

∗ x ×

× ×
× × ×

× × ×
× × x 0

x x x
0 x x

FIGURE 55.1 Chasing the bulge in one sweep of the implicit QR iteration for n = 6.

right corner of the matrix. The rotation in the (2, 3) plane sets the elements (3, 1) and
(1, 3) back to zero, but it generates two new nonzero elements at positions (4, 2) and
(2, 4); the rotation in the (3, 4) plane sets the elements (4, 2) and (2, 4) back to zero,
but it generates two new nonzero elements at positions (5, 3) and (3, 5), etc. The pro-
cedure is illustrated in Figure 55.1: “x” denotes the elements that are transformed
by the current plane rotation, “∗” denotes the newly generated nonzero elements
(the bulge), and 0 denotes the zeros that are reintroduced by the current plane
rotation.

The effect of this procedure is the following. At the end of the first sweep, the
resulting matrix T1 is equal to the the matrix that would have been obtained by
factorizing T − µI = QR and computing T1 = RQ+ µI as in Eq. (55.5).

5. Since the convergence of Algorithm 4 is quadratic (or even cubic), an eigenvalue is
isolated after just a few steps, which requires O(n) operations. This means that O(n2)
operations are needed to compute all eigenvalues.

6. If the eigenvector matrix Q is desired, the plane rotations need to be accumulated
similarly to the accumulation of X in Algorithm 3. This accumulation requires O(n3)
operations (see Example 2 below and Fact 55.9.5). Another, usually faster, algorithm
to compute Q is given in Fact 55.9.9.

7. The computed eigenvalue decomposition T = QΛQT satisfies the error bounds from
Fact 55.1.15 with A replaced by T and U replaced by Q. The deflation criterion
implies |ti,i+1| ≤ ε‖T‖F , which is within these bounds.

8. Combining Algorithms 1, 2, and 4 we get the the following algorithm:

Algorithm 5: Real symmetric eigenvalue decomposition
Input: real symmetric n× n matrix A
Output: eigenvalue matrix Λ and, optionally, eigenvector matrix U of A
if only eigenvalues are required, then

Compute T by Algorithm 1
T = QR iteration(T) % Algorithm 4
Λ = diag(T)

else
Compute T by Algorithm 1
Compute X by Algorithm 2
T = QR iteration(T) % with rotations accumulated in Q
Λ = diag(T)
U = XQ

endif

9. The EVD computed by Algorithm 5 satisfies the error bounds given in Fact 55.1.15.
However, the algorithm tends to perform better on matrices, which are graded down-
ward, that is, on matrices that exhibit systematic decrease in the size of the matrix
elements as we move along the diagonal. For such matrices, the tiny eigenvalues can
usually be computed with higher relative accuracy (although counterexamples can be
easily constructed). If the tiny eigenvalues are of interest, it should be checked whether

55-12 Handbook of Linear Algebra

there exists a symmetric permutation that moves larger elements to the upper left
corner, thus converting the given matrix to the one that is graded downward.

Examples:

1. For the matrix T from Example 55.2.1, after one sweep of Algorithm 4, we have

T =


2.9561 3.9469 0 0

3.9469 0.8069 −0.7032 0

0 −0.7032 0.5253 0.0091

0 0 0.0091 3.0454

.
2. Algorithm 4 is implemented in the LAPACK subroutine DSTEQR. This routine can compute

just the eigenvalues, or both eigenvalues and eigenvectors. To avoid double indices, the

diagonal and subdiagonal entries of T are stored in one-dimensional vectors, di = Tii and

ei = Ti+1,i, respectively. The timings are given in Section 55.9.

3. Algorithm 5 is implemented in the Matlab routine eig. The command Lambda = eig(A) re-

turns only the eigenvalues, [U,Lambda]=eig(A) returns the eigenvalues and the eigenvectors

(see Example 55.1.1).

4. The LAPACK implementation of Algorithm 5 is given in the subroutine DSYEV. To com-

pute only eigenvalues, DSYEV calls DSYTRD and DSTEQR without eigenvector option.

To compute both eigenvalues and eigenvectors, DSYEV calls DSYTRD, DORGTR, and

DSTEQR with the eigenvector option. The timings are given in Section 55.9.

55.4 Divide and Conquer Method

This is currently the fastest method for computing the EVD of a real symmetric tridiagonal
matrix T . It is based on splitting the given tridiagonal matrix into two matrices, and then
computing the EVDs of the smaller matrices and computing the final EVD from the two
EVDs. The method was first introduced in [Cup81], but numerically stable and efficient
implementation was first derived in [GE95].

Facts:

The following facts can be found in [Dem97, pp. 216–228], [Ste01, pp. 171–185], and [GE95].
T = [tij] is a real symmetric tridiagonal matrix of order n and T = UΛUT is its EVD.

1. Let T be partitioned as

T =



d1 e1

e1 d2 e2

. . .
. . .

. . .

ek−1 dk ek

ek dk+1 ek+1

. . .
. . .

. . .

en−2 dn−1 en−1

en−1 dn


≡

[
T1 ekeke

T
1

eke1e
T
k T2

]
.

We assume that T is unreduced, that is, ei 6= 0 for all i. Further, we assume that

Symmetric Matrix Eigenvalue Techniques 55-13

ei > 0 for all i, which can be easily attained by diagonal similarity with a diagonal
matrix of signs (see Example 1 below). Let

T̂1 = T1 − ekekeTk , T̂2 = T2 − eke1eT1 . (55.6)

In other words, T̂1 is equal to T1 except that dk is replaced by dk−ek, and T̂2 is equal
to T2 except that dk+1 is replaced by dk+1 − ek.

Let T̂i = ÛiΛ̂iÛ
T
i , i = 1, 2, be the respective EVDs and let v =

[
ÛT1 ek

ÛT2 e1

]
(v consists of

the last column of ÛT1 and the first column of ÛT2). Set Û = Û1⊕Û2 and Λ̂ = Λ̂1⊕Λ̂2.
Then

T =

[
Û1

Û2

] [[
Λ̂1

Λ̂2

]
+ ekvv

T

] [
ÛT1

ÛT2

]
= Û(Λ̂ + ekvv

T)ÛT . (55.7)

If
Λ̂ + ekvv

T = XΛXT

is the EVD of the rank-one modification of the diagonal matrix Λ̂, then T = UΛUT ,
where U = ÛX is the EVD of T . Thus, the original tridiagonal eigenvalue problem is
reduced to two smaller tridiagonal eigenvalue problems and one eigenvalue problem
for the rank-one update of a diagonal matrix.

2. If the matrix Λ̂ + ekvv
T is permuted such that λ̂1 ≥ · · · ≥ λ̂n, then λi and λ̂i are

interlaced, that is,

λ1 ≥ λ̂1 ≥ λ2 ≥ λ̂2 ≥ · · · ≥ λn−1 ≥ λ̂n−1 ≥ λn ≥ λ̂n.

Moreover, if λ̂i−1 = λ̂i for some i, then one eigenvalue is obviously known exactly,
that is, λi = λ̂i. In this case, λi can be deflated by applying to Λ̂ + ekvv

T a plane
rotation in the (i − 1, i) plane, where the Givens rotation parameters c and s are
computed from vi−1 and vi as in Fact 51.5.13.

3. If all λ̂i are different, then the eigenvalues λi of Λ̂+ekvv
T are solutions of the so-called

secular equation,
1 + ek

n∑
i=1

v2i

λ̂i − λ
= 0.

The eigenvalues can be computed by bisection, or by some faster zero finder of the
Newton type, and they need to be computed as accurately as possible.

4. Once the eigenvalues λi of Λ̂ + ekvv
T are known, the corresponding eigenvectors are

xi = (Λ̂− λiI)−1v.

5. Each λi and xi in Facts 3 and 4 is computed in O(n) operations, respectively, so the
overall computational cost for computing the EVD of Λ̂ + ekvv

T is O(n2).
6. The accuracy of the computed EVD is given by Fact 55.1.15. However, if some

eigenvalues are too close, they may not be computed with sufficient relative accu-
racy. As a consequence, the eigenvectors computed by using Fact 4 may not be
sufficiently orthogonal. One remedy to this problem is to solve the secular equa-
tion from Fact 3 in double of the working precision. A better remedy is based on
the solution of the following inverse eigenvalue problem. If λ̂1 > · · · > λ̂n and
λ1 > λ̂1 > λ2 > λ̂2 > · · · > λn−1 > λ̂n−1 > λn > λ̂n, then λi are the exact
eigenvalues of the matrix Λ̂ + ekv̂v̂

T , where

v̂i = sign vi

√√√√ ∏n
j=1(λj − λ̂i)∏n

j=1,j 6=i(λ̂j − λ̂i)
.

55-14 Handbook of Linear Algebra

Instead of computing xi according to Fact 4, we compute x̂i = (Λ̂ − λiI)−1v̂. The
eigenvector matrix of T is now computed as U = ÛX̂, where X̂ =

[
x1 · · · xn

]
, instead

of U = ÛX as in Fact 1. See also Fact 8.
7. The algorithm for the divide and conquer method is the following:

Algorithm 6: Divide and conquer method
Input: real symmetric tridiagonal n× n matrix T with ti−1,i > 0 for all i
Output: eigenvalue matrix Λ and eigenvector matrix U of T
function (Λ, U) = Divide and Conquer(T)

if n = 1, then
U = 1
Λ = T

else
k = floor(n/2)
form T̂1 and T̂2 = as in Eq. (55.6) in Fact 1
(Λ̂1, Û1) = Divide and Conquer(T̂1)
(Λ̂2, Û2) = Divide and Conquer(T̂2)
form Λ̂ + ekvv

T as in Eq. (55.7) in Fact 1
compute the eigenvalues λi via Fact 3
compute v̂ via Fact 6
x̂i = (Λ̂− λiI)−1v̂

U =

[
Û1

Û2

]
X̂

endif

8. The rationale for the approach of Fact 6 and Algorithm 6 is the following: The com-
putations of v̂ and x̂i involve only subtractions of exact quantities, so there is no
cancellation. Thus, all entries of each x̂i are computed with high relative accuracy so
x̂i are mutually orthonormal to working precision. Also, the transition from the ma-
trix Λ̂+ekvv

T to the matrix Λ̂+ekv̂v̂
T induces only perturbations that are bounded

by ε‖T‖. Thus, the EVD computed by Algorithm 6 satisfies the error bounds given
in Fact 55.1.15, producing at the same time numerically orthogonal eigenvectors. For
details, see [Dem97, pp. 224–226] and [GE95].

9. Although Algorithm 6 requires O(n3) operations (this is due to the computation of
U in the last line), it is in practice usually faster than Algorithm 4 from Fact 55.3.2.
This is due to deflations which are performed when solving the secular equation from
Fact 3, resulting in matrix X̂ having many zeros.

10. The operation count of Algorithm 6 can be reduced toO(n2 log n) if the Fast Multipole
Method, originally used in particle simulation, is used for solving the secular equation
from Fact 3 and for multiplying ÛX̂ in the last line of Algorithm 6. For details, see
[Dem97, pp. 227–228] and [GE95].

Examples:

1. Let T be the matrix from Example 55.2.1 pre- and postmultiplied by the matrix D =

diag(1,−1,−1, 1):

T =


4.5013 3.0194 0 0

3.0194 −0.3692 1.2804 0

0 1.2804 0.5243 0.9303

0 0 0.9303 2.6774

.

Symmetric Matrix Eigenvalue Techniques 55-15

The EVDs of the matrices T̂1 and T̂2 from Eq. (55.6) in Fact 1 are

T̂1 =

[
4.5013 3.0194

3.0194 −1.6496

]
, Û1 =

[
0.3784 −0.9256

−0.9256 −0.3784

]
, Λ̂1 =

[
−2.8841 0

0 5.7358

]
,

T̂2 =

[
−0.7561 0.9303

0.9303 2.6774

]
, Û2 =

[
−0.9693 −0.2458

0.2458 −0.9693

]
, Λ̂2 =

[
−0.9920 0

0 2.9132

]
,

so, in Eq. (55.7) in Fact 1, we have

Λ̂ = diag(−2.8841, 5.7358,−0.9920, 2.9132),

v = [−0.9256 −0.3784 −0.9693 −0.2458]T .

2. Algorithm 6 is implemented in the LAPACK subroutine DSTEDC. This routine can compute

just the eigenvalues or both eigenvalues and eigenvectors. The routine requires workspace of

approximately n2 elements. The timings are given in Section 55.9.

55.5 Bisection and Inverse Iteration

The bisection method is convenient if only part of the spectrum is needed. If the eigenvectors
are needed as well, they can be efficiently computed by the inverse iteration method (see
Facts 55.1.7 and 55.1.8).

Facts:

The following facts can be found in [Dem97, pp. 228–213] and [Par80, pp. 65–75].
A is a real symmetric n×n matrix and T is a real symmetric tridiagonal n×n matrix.

1. (Sylvester’s theorem) For a real nonsingular matrix X, the matrices A and XTAX
have the same inertia. (See also Section 9.3.)

2. Let α, β ∈ R with α < β. The number of eigenvalues of A in the interval [α, β) is
equal to ν(A− βI)− ν(A− αI). By systematically choosing the intervals [α, β), the
bisection method pinpoints each eigenvalue of A to any desired accuracy.

3. In the factorization T − µI = LDLT , where D = diag(d1, . . . , dn) and L is the unit
lower bidiagonal matrix, the elements of D are computed by the recursion

d1 = t11 − µ, di = (tii − µ)− t2i,i−1/di−1, i = 2, . . . n,

and the subdiagonal elements of L are given by li+1,i = ti+1,i/di. By Fact 1 the
matrices T and D have the same inertia; thus, the above recursion enables an efficient
implementation of the bisection method for T .

4. The factorization from Fact 3 is essentially Gaussian elimination without pivoting.
Nevertheless, if di 6= 0 for all i, the above recursion is very stable (see [Dem97, Lemma
5.4] for details).

5. Even when di−1 = 0 for some i, if the IEEE arithmetic is used, the computation
will continue and the inertia will be computed correctly. Namely, in that case, we
would have di = −∞, li+1,i = 0, and di+1 = ti+1.i+1 − µ. For details, see [Dem97,
pp. 230–231] and the references therein.

55-16 Handbook of Linear Algebra

6. Computing one eigenvalue of T by using the recursion from Fact 3 and bisection
requires O(n) operations. For a computed eigenvalue, the corresponding eigenvector
is computed by inverse iteration given by Eq. (55.2). The convergence is very fast
(Fact 55.1.7), so the cost of computing each eigenvector is also O(n) operations.
Therefore, the overall cost for computing all eigenvalues and eigenvectors is O(n2)
operations.

7. Both bisection and inverse iteration are highly parallel since each eigenvalue and
eigenvector can be computed independently.

8. If some of the eigenvalues are too close, the corresponding eigenvectors computed
by inverse iteration may not be sufficiently orthogonal. In this case, it is necessary
to orthogonalize these eigenvectors (for example, by the modified Gram–Schmidt
procedure). If the number of close eigenvalues is too large, the overall operation count
can increase to O(n3).

9. The EVD computed by bisection and inverse iteration satisfies the error bounds from
Fact 55.1.15.

Examples:

1. The bisection method for tridiagonal matrices is implemented in the LAPACK subroutine

DSTEBZ. This routine can compute all eigenvalues in a given interval or the eigenvalues

from λl to λk, where l < k, and the eigenvalues are ordered from smallest to largest. Inverse

iteration (with reorthogonalization) is implemented in the LAPACK subroutine DSTEIN.

The timings for computing half of the largest eigenvalues and the corresponding eigenvectors

are given in Section 55.9.

55.6 Multiple Relatively Robust Representations

The computation of the tridiagonal EVD which satisfies the error bounds of Fact 55.1.15
such that the eigenvectors are orthogonal to working precision, all in O(n2) operations, has
been the “holy grail” of numerical linear algebra for a long time. The method of Multiple
Relatively Robust Representations (MRRR) does the job, except in some exceptional cases.
The key idea is to implement inverse iteration more carefully. The practical algorithm is
quite elaborate and only main ideas are described here.

Facts:

The following facts can be found in [Dhi97], [DP04], and [DPV06].
T = [tij] denotes a real symmetric tridiagonal matrix of order n. D, D+, and D− are

diagonal matrices with the i-th diagonal entry denoted by di,D+(i), andD−(i), respectively.
L and L+ are unit lower bidiagonal matrices and U− is a unit upper bidiagonal matrix,
where we denote (L)i+1,i by li, (L+)i+1,i by L+(i), and (U−)i,i+1 by U−(i).

1. Instead of working with the given T , the MRRR method works with the factorization
T = LDLT (computed, for example, as in Fact 55.5.3 with µ = 0). If T is positive
definite, then all eigenvalues of LDLT are determined to high relative accuracy in the
sense that small relative changes in the elements of L and D cause only small relative
changes in the eigenvalues. If T is indefinite, then the tiny eigenvalues of LDLT are
determined to high relative accuracy in the same sense. The bisection method based
on Algorithms 7a and 7b computes the well-determined eigenvalues of LDLT to high
relative accuracy; that is, the computed eigenvalue λ̂ satisfies |λ− λ̂| = O(nε|λ̂|).

Symmetric Matrix Eigenvalue Techniques 55-17

2. The MRRR method is based on the following three algorithms:

Algorithm 7a: Differential stationary qd transform
Input: factors L and D of T and the computed eigenvalue λ̂
Output: matrices D+ and L+ such that LDLT − λ̂I = L+D+L

T
+ and vector s

s1 = −λ̂
for i = 1 : n− 1

D+(i) = si + di
L+(i) = (dili)/D+(i)

si+1 = L+(i)lisi − λ̂
endfor
D+(n) = sn + dn

Algorithm 7b: Differential progressive qd transform
Input: factors L and D of T and the computed eigenvalue λ̂
Output: matrices D− and U− such that LDLT − λ̂I = U−D−U

T
− and vector p

pn = dn − λ̂
for i = n− 1 : −1 : 1

D−(i+ 1) = dil
2
i + pi+1

t = di/D−(i+ 1)
U−(i) = lit

pi = pi+1t− λ̂
endfor
D−(1) = p1

Algorithm 7c: Eigenvector computation
Input: output of Algorithms 7a and 7b and the computed eigenvalue λ̂
Output: index r and the eigenvector u such that LDLTu = λ̂u
for i = 1 : n− 1

γi = si + di
D−(i+1) pi+1

endfor
γn = sn + pn + λ̂
find r such that |γr| = mini |γi|
ur = 1
for i = r − 1 : −1 : 1

ui = −L+(i)ui+1

endfor
for i = r : n− 1

ui+1 = −U−(i)ui
endfor
u = u/‖u‖2

3. Algorithm 7a is accurate in the sense that small relative perturbations (of the order
of few ε) in the elements li, di, and the computed elements L+(i) and D+(i) make

LDLT − λ̂I = L+D+L
T
+ an exact equality. Similarly, Algorithm 7b is accurate in

the sense that small relative perturbations in the elements li, di, and the computed
elements U−(i) and D−(i) make LDLT − λ̂I = U−D−U

T
− an exact equality.

4. The idea behind Algorithm 7c is the following: Index r is the index of the column

55-18 Handbook of Linear Algebra

of the matrix (LDLT − λ̂I)−1 with the largest norm. Since the matrix LDLT − λ̂I
is nearly singular, the eigenvector is computed in just one step of inverse iteration
given by Eq. (55.2) starting from the vector γrer. Further, LDLT − λ̂I = N∆NT ,
where N∆NT is the the so-called twisted factorization obtained from L+, D+, U−,
and D−:

∆ = diag(D+(1), . . . , D+(r − 1), γr, D−(r + 1), . . . , D−(n)),

Nii = 1,

Ni+1,i = L+(i), i = 1, . . . , r − 1,

Ni,i+1 = U−(i), i = r, . . . , n− 1.

Since ∆er = γrer and Ner = er, solving N∆NTu = γrer is equivalent to solving
NTu = er, which is exactly what is done by Algorithm 7c.

5. If an eigenvalue λ is well separated from other eigenvalues in the relative sense (the
quantity minµ∈σ(A),µ6=λ |λ−µ|/|λ| is large, say greater than 10−3), then the computed
vector û satisfies ‖ sin Θ(u, û)‖2 = O(nε). If all eigenvalues are well separated from
each other, then the computed EVD satisfies error bounds of Fact 55.1.15 and the
computed eigenvectors are numerically orthogonal, that is, |ûTi ûj | = O(nε) for i 6= j.

6. If there is a cluster of poorly separated eigenvalues which is itself well separated from
the rest of σ(A), the MRRR method chooses a shift µ which is near one end of the
cluster and computes a new factorization LDLT − µI = L+D+L

T
+. The eigenvalues

within the cluster are then recomputed by bisection as in Fact 1 and their corre-
sponding eigenvectors are computed by Algorithms 7a, 7b, and 7c. When properly
implemented, this procedure results in the computed EVD, which satisfies the error
bounds of Fact 55.1.15 and the computed eigenvectors are numerically orthogonal.

Examples:

1. The MRRR method is implemented in the LAPACK subroutine DSTEGR. This routine can

compute just the eigenvalues, or both eigenvalues and eigenvectors. The timings are given

in Section 55.9.

55.7 Jacobi Method

The Jacobi method is the oldest method for EVD computations [Jac846]. The method does
not require tridiagonalization. Instead, the method computes a sequence of orthogonally
similar matrices which converge to Λ. In each step a simple plane rotation, which sets one
off-diagonal element to zero, is performed.

Definitions:

A is a real symmetric matrix of order x and A = UΛUT is its EVD.

The Jacobi method forms a sequence of matrices,

A0 = A, Ak+1 = G(ik, jk, c, s)AkG(ik, jk, c, s)
T , k = 1, 2, . . . ,

where G(ik, jk, c, s) is the plane rotation matrix defined in Section 51.5. The parameters c and s

are chosen such that [Ak+1]ikjk = [Ak+1]jkik = 0 and are computed as described in Fact 1.

The plane rotation with c and s as above is also called the Jacobi rotation.

The off-norm of A is defined as off(A) = (
∑
i

∑
j 6=i a

2
ij)

1/2, that is, off-norm is the Frobenius

norm of the matrix consisting of all off-diagonal elements of A.

Symmetric Matrix Eigenvalue Techniques 55-19

The choice of pivot elements [Ak]ikjk is called the pivoting strategy.

The optimal pivoting strategy, originally used by Jacobi, chooses pivoting elements such that

|[Ak]ikjk | = maxi<j |[Ak]ij |.
The row cyclic pivoting strategy chooses pivot elements in the systematic row-wise order,

(1, 2), (1, 3), . . . , (1, n), (2, 3), (2, 4), . . . , (2, n), (3, 4), . . . , (n− 1, n).

Similarly, the column-cyclic strategy chooses pivot elements column-wise.

One pass through all matrix elements is called cycle or sweep.

Facts:

Facts 1 to 8 can be found in [Wil65, pp. 265–282], [Par80, Chap. 9], [GV96, Chap. 8.4], and
[Dem97, Chap. 5.3.5].

1. The Jacobi rotations parameters c and s are computed as follows: If [Ak]ikjk = 0,
then c = 1 and s = 0, otherwise

τ =
[Ak]ikik − [Ak]jkjk

2[Ak]ikjk
, t =

sign(τ)

|τ |+
√

1 + τ2
, c =

1√
1 + t2

, s = c · t.

2. After each rotation, the off-norm decreases, that is,

off2(Ak+1) = off2(Ak)− 2[Ak]2ikjk .

With the appropriate pivoting strategy, the method converges in the sense that

off(Ak)→ 0, Ak → Λ,

∞∏
k=1

RT(ik,jk) → U.

3. For the optimal pivoting strategy the square of the pivot element is greater than the
average squared element, [Ak]2ikjk ≥ off2(A) 1

n(n−1) . Thus,

off2(Ak+1) ≤
(

1− 2

n(n− 1)

)
off2(Ak)

and the method converges.
4. For the row cyclic and the column cyclic pivoting strategies, the method converges.

The convergence is ultimately quadratic in the sense that

off(Ak+n(n−1)/2) ≤ γ off2(Ak)

for some constant γ, provided off(Ak) is sufficiently small.
5. We have the following algorithm:

55-20 Handbook of Linear Algebra

Algorithm 8: Jacobi method with row-cyclic pivoting strategy
Input: real symmetric n× n matrix A
Output: the eigenvalue matrix Λ and the eigenvector matrix U
U = In
repeat % one cycle

for i = 1 : n− 1
for j = i+ 1 : n

compute c and s according to Fact 1[
Ai,1:n

Aj,1:n

]
= G(i, j, c, s)

[
Ai,1:n

Aj,1:n

]
[
A1:n,i A1:n,j

]
=
[
A1:n,i A1:n,j

]
G(i, j, c, s)T[

U1:n,i U1:n,j

]
=
[
U1:n,i U1:n,j

]
G(i, j, c, s)T

endfor
endfor

until off(A) ≤ tol for some user defined stopping criterion tol
Λ = diag(A)

6. Detailed implementation of the Jacobi method can be found in [Rut66] and [WR71].
7. The EVD computed by the Jacobi method satisfies the error bounds from Fact 55.1.15.
8. The Jacobi method is suitable for parallel computation. There exist convergent par-

allel strategies that enable simultaneous execution of several rotations.
9. [GV96, p. 429] The Jacobi method is simple, but it is slower than the methods

based on tridiagonalization. It is conjectured that standard implementations require
O(n3 log n) operations. More precisely, each cycle clearly requires O(n3) operations
and it is conjectured that log n cycles are needed until convergence.

10. [DV92], [DV07] If A is positive definite, the method can be modified such that it
reaches the speed of the methods based on tridiagonalization and at the same time
computes the eigenvalues with high relative accuracy. See Chapter 59 for details.

Examples:

1. Let A be the matrix from Example 55.1.1. After executing two cycles of Algorithm 8, we

have

A =


6.0054 −0.0192 0.0031 0.0003

−0.0192 3.0455 −0.0005 −0.0000

0.0031 −0.0005 0.6024 −0.0000

0.0003 −0.0000 0.0000 −2.3197

.

55.8 Lanczos Method

If the matrix A is large and sparse and if only some eigenvalues and their eigenvectors are
desired, sparse matrix methods are the methods of choice. For example, the power method
can be useful to compute the eigenvalue with the largest modulus. The basic operation in
the power method is matrix-vector multiplication, and this can be performed very fast if A
is sparse. Moreover, A need not be stored in the computer — the input for the algorithm can
be just a program which, given some vector x, computes the product Ax. An “improved”
version of the power method, which efficiently computes several eigenvalues (either largest
in modulus or near some target value µ) and the corresponding eigenvectors, is the Lanczos
method.

Symmetric Matrix Eigenvalue Techniques 55-21

Definitions:

A is a real symmetric matrix of order n.

Given a nonzero vector x and an index k < n, the Krylov matrix is defined as

Kk = [x Ax A2x · · · Ak−1x].

Facts:

The following facts can be found in [Par80, Chap. 13], [GV96, Chap. 9], [Dem97, Chap. 7],
and [Ste01, Chap. 5.3].

1. The Lanczos method is based on the following observation. If Kk = XR is the QR
factorization of the matrix Kk (see Sections 5.5 and 51.5), then the k × k matrix
T = XTAX is tridiagonal. The matrices X and T can be computed by using only
matrix-vector products in just O(kn) operations. Let T = QΛQT be the EVD of T
(computed by any of the methods from Sections 55.3 to 55.6). Then λi approximate
well some of the largest and smallest eigenvalues of A. The columns of the matrix
U = XQ approximate the corresponding eigenvectors of A. We have the following
algorithm:

Algorithm 9: Lanczos method
Input: real symmetric n× n matrix A, unit vector x and index k < n
Output: matrices Λ and U
X:,1 = x
for i = 1 : k

z = AX:,i

tii = XT
:,i z

if i = 1, then
z = z− tiiX:,i

else
z = z− tiiX:,i − ti,i−1X:,i−1

endif
µ = ‖z‖2
if µ = 0, then

stop
else

ti+1,i = µ
ti,i+1 = µ
X:,i+1 = z/µ

endif
endfor
compute the EVD of the tridiagonal matrix, T (1 : k, 1 : k) = QΛQT

U = XQ

2. As j increases, the largest (smallest) eigenvalues of the matrix T1:j,1:j converge toward
some of the largest (smallest) eigenvalues of A (due to the Cauchy interlace property).
The algorithm can be redesigned to compute only largest or smallest eigenvalues. Also,
by using shift and invert strategy, the method can be used to compute eigenvalues near
some specified value. In order to obtain better approximations, k should be greater
than the number of required eigenvalues. On the other side, in order to obtain better
accuracy and efficacy, k should be as small as possible (see Facts 3 and 4 below).

55-22 Handbook of Linear Algebra

3. The eigenvalues of A are approximated from the matrix T1:k,1:k; thus, the last ele-
ment ν = tk+1,k is not needed. However, this element provides key information about
accuracy at no extra computational cost. The exact values of residuals are as fol-
lows: ‖AU − UΛ‖2 = ν and, in particular, ‖AU:,i − λiU:,i‖2 = ν|qki|, i = 1, . . . , k.

Further, there are k eigenvalues λ̃1, . . . , λ̃k of A such that |λi − λ̃i| ≤ ν. For the cor-
responding eigenvectors, we have sin 2Θ(ui, ũi) ≤ 2ν/minj 6=i |λi − λ̃j |. In practical
implementations of Algorithm 9, ν is usually used to determine the index k.

4. Although theoretically very elegant, the Lanczos method has inherent numerical in-
stability in the floating point arithmetic, and so it must be implemented carefully (see,
e.g., [LSY98]). Since the Krylov vectors are, in fact, generated by the power method,
they converge toward an eigenvector of A. Thus, as k increases, the Krylov vectors be-
come more and more parallel. As a consequence, the recursion in Algorithm 9, which
computes the orthogonal bases X for the subspace rangeKk, becomes numerically
unstable and the computed columns of X cease to be sufficiently orthogonal. This
affects both the convergence and the accuracy of the algorithm. For example, it can
happen that T has several eigenvalues that converge toward some simple eigenvalue
of A (these are the so-called ghost eigenvalues).

The loss of orthogonality is dealt with by using the full reorthogonalization pro-
cedure. In each step, the new z is orthogonalized against all previous columns of
X. In Algorithm 9, the formula z = z − tiiX:,i − ti,i−1X:,i−1 is replaced by z =

z−
∑i−1
j=1(zTX(:, j))X(:, j). To obtain better orthogonality, the latter formula is usu-

ally executed twice.
The full reorthogonalization raises the operation count to O(k2n). The selective

reorthogonalization is the procedure in which the current z is orthogonalized against
some selected columns of X. This is the way to attain sufficient numerical stability and
not increase the operation count too much. The details of selective reorthogonalization
procedures are very subtle and can be found in the references. (See also Chapter 57.)

5. The Lanczos method is usually used for sparse matrices. Sparse matrix A is stored
in the sparse format in which only values and indices of nonzero elements are stored.
The number of operations required to multiply some vector by A is also proportional
to the number of nonzero elements. (See also Chapter 56.)

Examples:

1. Let A be the matrix from Example 55.1.1 and let x = [1/2 1/2 1/2 1/2]T . For k = 2,

the output of Algorithm 9 is

Λ =

[
−2.0062

5.7626

]
, U =


−0.4032 −0.8804

0.4842 −0.2749

0.3563 −0.3622

0.6899 −0.1345

 ,
with ν = 1.4965 (c.f. Fact 3). For k = 3, the output is

Λ =

−2.3107 0 0

0 2.8641 0

0 0 5.9988

 , U =


0.3829 −0.0244 0.8982

−0.2739 −0.9274 0.0312

−0.3535 −0.1176 0.3524

−0.8084 0.3541 0.2607

 ,
with ν = 0.6878.

2. The Lanczos method is implemented in the ARPACK routine DSDRV∗, where ∗ denotes the

computation mode [LSY98, App. A]. The routines from ARPACK are implemented in the

Symmetric Matrix Eigenvalue Techniques 55-23

MATLAB command eigs. Generation of a sparse symmetric 10,000×10,000 matrix with 10%

nonzero elements with the MATLAB command A=sprandsym(10000,0.1) takes 6.5 seconds

on a processor described in Fact 55.9.1. The computation of 100 largest eigenvalues and the

corresponding eigenvectors with [U,Lambda]=eigs(A,100,’LM’,opts) takes approximately

100 seconds. Here, index k = 200 is automatically chosen by the algorithm. (See also Chap-

ter 94.)

55.9 Comparison of Methods

In this section, we give timings for the LAPACK implementations of the methods described
in Sections 55.2 to 55.6. The timing for the Lanczos method is given in Example 55.8.3.

Definitions:

A measure of a processor’s efficacy or speed is the number of floating-point operations per second

(flops).

Facts:

A is an n × n real symmetric matrix and A = UΛUT is its EVD. T is a tridiagonal n × n
real symmetric matrix and T = QΛQT is its EVD. T = XTAX is the reduction of A to a
tridiagonal from Section 55.2.

1. Our tests were performed on the Intel64 Xeon Quad Core processor running at 2.33
GHz with 4 Gbytes of RAM and 4 Mbytes of cache memory. This processor performs
up to 23 Gflops (23 billion operations per second). This performance is attained for
the matrix multiplication with the BLAS 3 subroutine DGEMM.

2. Our test programs were compiled with the Intel ifort FORTRAN compiler (ver-
sion 12.1.2) and linked with the Intel Math Kernel Library (version 10.3.8) in which
LAPACK (version 3.3) and BLAS are implemented.

3. Timings for the methods are given in Table 55.1. The execution times for DSTEBZ
(bisection) and DSTEIN (inverse iteration) are for computing one-half of the eigen-
values (the largest ones) and the corresponding eigenvectors, respectively. DSTEDC
without eigenvectors, DSTEBZ, DSTEIN, and DSTEGR are implemented to use only
one core.

TABLE 55.1 Execution times(s) for LAPACK routines for various matrix dimensions n.

Routine Input Output Example n = 1000 n = 2000 n = 4000
DSYTRD A T 2.3 0.24 3.11 32.6
DSYTRD/DORGTR T , X 0.44 3.92 40.8
DSTEQR T Λ 3.2 0.09 0.33 1.26

Λ, Q 0.62 5.03 37
DSYEV A Λ 3.4 0.44 2.91 15

Λ, U 1.04 7.32 68
DSTEDC T Λ 4.2 0.07 0.24 0.95

Λ, Q 0.21 0.24 0.94
DSTEBZ T Λ 5.1 0.43 1.66 6.45
DSTEIN Q 0.1 0.43 4.01
DSTEGR T Λ 6.1 0.13 0.49 1.78

Λ, Q 0.30 1.22 4.7

55-24 Handbook of Linear Algebra

4. The performance attained for practical algorithms is lower than the peak performance
from Fact 1. For example, by combining Facts 55.2.6 and 55.2.7 with Table 55.1, we
see that the tridiagonalization routines DSYTRD and DORGTR attain the speed of
4 Gflops.

5. The computation times for the implicitly shifted QR routine, DSTEQR, grow approx-
imately with n2 when only eigenvalues are computed, and with n3 when eigenvalues
and eigenvectors are computed, as predicted in Facts 55.3.5 and 55.3.6.

6. The execution times for DSYEV are approximately equal to the sums of the timings
for DSYTRD (tridiagonalization), DORGTR (computing X), and DSTEQR with the
eigenvector option (computing the EVD of T).

7. The divide and conquer method, implemented in DSTEDC, is the fastest method for
computing the EVD of a tridiagonal matrix.

8. DSTEBZ and DSTEIN (bisection and inverse iteration) are faster, especially for larger
dimensions, than DSTEQR (tridiagonal QR iteration), but slower than DSTEDC
(divide and conquer) and DSTEGR (multiple relatively robust representations).

9. Another algorithm to compute the EVD of T is to use DSTEQR to compute only the
eigenvalues and then use DSTEIN (inverse iteration) to compute the eigenvectors.
This is usually considerably faster than computing both eigenvalues and eigenvectors
by DSTEQR.

10. The execution times for DSTEGR are proportional to O(n2).

Author Note: This work is supported by the Croatian Ministry of Science, Education and
Sports (Grant 023-0372783-1289).

References

[ABB99] E. Anderson, Z. Bai, and C. Bischof. LAPACK Users’ Guide, 3rd ed. SIAM, Philadel-

phia, 1999.

[Cup81] J.J.M. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenprob-

lem. Numer. Math., 36: 177–195, 1981.

[Dem97] J.W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.

[DV92] J.W. Demmel and K. Veselić. Jacobi’s method is more accurate than QR. SIAM J.
Matrix Anal. Appl., 13: 1204–1245, 1992.

[Dhi97] I.S. Dhillon. A New O(N2) Algorithm for the Symmetric Tridiagonal Eigen-
value/Eigenvector Problem. Ph.D. thesis, University of California, Berkeley, 1997.

[DP04] I.S. Dhillon and B.N. Parlett. Orthogonal eigenvectors and relative gaps. SIAM J. Matrix
Anal. Appl., 25: 858–899, 2004.

[DPV06] I.S. Dhillon, B.N. Parlett, and C. Vömel. The design and implementation of the MRRR

algorithm. ACM Trans. Math. Software, 32: 533–560, 2006.

[DHS89] J.J. Dongarra, S.J. Hammarling, and D.C. Sorensen. Block reduction of matrices to

condensed forms for eigenvalue computations. J. Comp. Appl. Math., 27: 215–227,

1989.

[DV07] Z. Drmač and K. Veselić. New fast and accurate Jacobi SVD algorithm. I. SIAM J.
Matrix Anal. Appl., 29:1322–1342, 2007.

[GV96] G.H. Golub and C.F. Van Loan. Matrix Computations, 3rd ed. The John Hopkins

University Press, Baltimore, MD, 1996.

[GE95] M. Gu and S.C. Eisenstat. A divide-and-conquer algorithm for the symmetric tridiagonal

eigenproblem. SIAM J. Matrix Anal. Appl., 16:79–92, 1995.

[Jac846] C.G.J. Jacobi, Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vork-

ommenden Gleichungen numerisch aufzulösen, Crelles Journal für Reine und Angew.

Math., 30: 51–95, 1846.

Symmetric Matrix Eigenvalue Techniques 55-25

[JSB] N. Jakovčević Stor, I. Slapničar, and J. Barlow. Accurate eigenvalue decomposition of

arrowhead matrices. Submitted.

[LSY98] R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of
Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM,

Philadelphia, 1998.

[Par80] B.N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Upper Saddle River,

NJ, 1980.

[Rut66] H. Rutishauser. The Jacobi method for real symmetric matrices, Numerische Mathe-
matik, 9: 1–10, 1966.

[Ste01] G.W. Stewart, Matrix Algorithms, Vol. II: Eigensystems. SIAM, Philadelphia, 2001.

[TB97] L.N. Trefethen and D. Bau, III. Numerical Linear Algebra. SIAM, Philadelphia, 1997.

[Wil65] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, U.K.,

1965.

[WR71] J.H. Wilkinson and C. Reinsch. Handbook for Automatic Computation, Vol. II, Linear
Algebra. Springer, New York, 1971.

